高二数学必修二知识点总结( 五 )


2.两平行线间的距离公式:已知两条平行线直线和的一般式方程为:,:,则与的距离为第四章圆与方程4.1.1 圆的标准方程
1.圆的标准方程:圆心为A(a,b),半径为r的圆的方程
2.点与圆的关系的判断方法: (1)>,点在圆外 (2)=,点在圆上 (3),点在圆内4.1.2 圆的一般方程
1.圆的一般方程:
2.圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显 。4.2.1 圆与圆的位置关系
1.用点到直线的距离来判断直线与圆的位置关系.设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点: (1)当时,直线与圆相离; (2)当时,直线与圆相切; (3)当时,直线与圆相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点: (1)当时,圆与圆相离; (2)当时,圆与圆外切; (3)当时,圆与圆相交; (4)当时,圆与圆内切; (5)当时,圆与圆内含;4.2.3 直线与圆的方程的应用
1.利用平面直角坐标系解决直线与圆的位置关系;
2.过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系
1.点M对应着唯一确定的有序实数组,、、分别是P、Q、R在、、轴上的坐标
2.有序实数组,对应着空间直角坐标系中的一点
3.空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标 。